Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods
نویسندگان
چکیده
منابع مشابه
2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملLiouville Operator Approach to Symplecticity-Preserving RG Method
We present a method to construct symplecticity-preserving renormalization group maps by using the Liouville operator, and obtain correctly reduced symplectic maps describing their long-time behavior even when a resonant island chain appears. There has been a long history to study an asymptotic solution of Hamiltonian flows by means of singular perturbation methods such as the averaging method a...
متن کامل2-stage explicit total variation diminishing preserving runge-kutta methods
in this paper, we investigate the total variation diminishing property for a class of 2-stage explicit rung-kutta methods of order two (rk2) when applied to the numerical solution of special nonlinear initial value problems (ivps) for (odes). schemes preserving the essential physical property of diminishing total variation are of great importance in practice. such schemes are free of spurious o...
متن کاملStrong-Stability-Preserving 7-Stage Hermite-Birkhoff Time-Discretization Methods
Strong-stability-preserving (SSP) time-discretization methods have a nonlinear stability property that makes them particularly suitable for the integration of hyperbolic conservation laws. A collection of 4-stage explicit SSP Hermite-Birkhoff methods of orders 4 to 8 with nonnegative coefficients are constructed as k-step analogues of fourth-order Runge-Kutta methods with three off-step points....
متن کاملA Symplecticity-preserving Gas-kinetic Scheme for Gas Dynamic Equations under External Forcing Field
In this paper, based on the BGK equation, Liouville's theorem, and symplecticity preserving property of a Hamiltonian flow, a well-balanced kinetic scheme for the compressible Navier-Stokes equations under external forcing field is developed. In order to construct such a scheme, the physical process of particles transport through a potential barrier at a cell interface will be modeled with pene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics and Computation
سال: 2018
ISSN: 0096-3003
DOI: 10.1016/j.amc.2017.11.054